contents and sample pages

<table>
<thead>
<tr>
<th>Title</th>
<th>Developing Mathematics with Base Ten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Paul Swan & Geoff White</td>
</tr>
<tr>
<td>ISBN/ISSN</td>
<td>978-1-74126-159-2</td>
</tr>
<tr>
<td>Published by</td>
<td>R.I.C. Publications</td>
</tr>
</tbody>
</table>

This document is copyright and has been made available with permission. Please contact the Australian Association of Mathematics Teachers to purchase this product.

AAMT is the nation’s premier organisation of mathematics educators: supporting and enhancing the work of teachers; promoting the learning of mathematics; representing and promoting interests in mathematics education.
CONTENTS

Contents..i
Foreword...ii
What are Base Ten blocks?...iii
Base Ten blocks...iv
A guide to using Base Ten blocks in the classroom....................v
Challenging the step-by-step approach..................................vi
Towards mathematical abstraction..viii

Before Base Ten ...2–13
Before introducing Base Ten blocks.......................................4
99 and over...5
Trading board (tens and ones)...6
Progress chart...7
Count down...8–9
Expanding the number experience......................................10
Mix and match..11–13

Trading games...14–33
Discovering Base Ten blocks..16
Base Ten trading...17
Trading games in tens and ones...18–19
Base Ten trading board...20
Trading to 100...21–22
Breaking a flat..23
Base Ten challenges..24
Longs and match...25
Match and match boards..26
Make match...27–28
Mix and match to Base Ten...29–30
Renaming thousands..31–32

Patterns and patterns..34–71
Odd and even split...36–38
Place value – 1..39
Place value – 2..40
Place value – 3..41–42
Decimal fractions..43
Base Ten conversion trading board – 1.................................44
Trading to decimal fractions..45
Base Ten conversion trading board – 2.................................46
Decimal fractions...47

Arithmetic...48–49
Addition without regrouping..50
Addition with regrouping..51
Subtraction..52
Multiplication – 1...53
Multiplication – 2...54
Base Ten blocks...55
Sharing time..56
Division..57
Checking your work...58
The block game...59–60
Per cent..61
Adding tenths and hundredths..62–64

Measuring with Base Ten blocks...72–79
Comparing lengths..74–75
Make a metre..76
Make a square metre..77
One in a million...78
All wrapped up..79

Glossary..80
Count down

Purpose
To develop students' understanding of the subtraction process; that is, the decomposition or the breaking up of bundles of ten to make ten ones.

Recording
Always encourage students to record the progress of a game.
- Draw pictures or write words.
- Take 'before and after' digital photographs.
- Complete the game progress chart (opposite).
- Produce a recorded set of instructions to present to a new group of players.
- A PowerPoint™ presentation could be prepared.

Activities of this nature help reinforce the concepts and ideas, which are so important.
Avoid the temptation to formalise the 'unbundling' process. Basically, this 'unbundling' is the key idea behind the decomposition algorithm for subtraction. The focus of this activity is on gaining an intuitive understanding of this process. The symbols and abstraction come later.

Looking for learning
Note how students exchange 1 ten for 10 ones (sticks); do they do this automatically? Do they count individual sticks or do they perform mental calculation then store it with the materials? If they perform a mental calculation, they are ready to move on.

Developing subtraction

You will need:
- 6-sided dot die
- elastic bands
- collection of craft sticks
- trading boards, p. 6 (one each)

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Method
Each player begins with 99 craft sticks on his playing board. Players take turns to roll a die and remove that many craft sticks from their playing board. The first player to remove all of his/her craft sticks (reach zero) is the winner.

Problem solving
At times students will be faced with a situation of what to do if they do not have enough craft sticks that they can remove.

Example

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

At the end of the turn, everything is returned to its balance, with no more than 9 craft sticks remaining in the ones column.

Extension
Combine '99 and over' and 'Count down'.
- Alternate between composing (adding) and decomposing (subtracting)
- Start at an agreed point, then add (compose) for three throws and subtract (decompose) for one throw. The first to an agreed target wins.
- Students will invent other variations; e.g. use two different coloured dice, one for adding and one for subtracting.
Partitioning numbers in standard and non-standard ways

1. Show students a two-digit number represented by Base Ten blocks; for example:

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

2. Ask the students to show alternative representations; for example:

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
</tbody>
</table>

3. Extend to three-digit numbers.

<table>
<thead>
<tr>
<th>Hundreds</th>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 hundreds</td>
<td>1 ten</td>
<td>5 ones</td>
</tr>
<tr>
<td>1 hundred</td>
<td>11 tens</td>
<td>5 ones</td>
</tr>
</tbody>
</table>

Purpose

Students will learn to rename numbers in a variety of ways.

Background

It is important that students recognise alternative ways to name/represent numbers. This will help them gain a better understanding of numbers—which in turn will assist them later when comparing numbers and calculating.

Guide to using this photocopiable resource (see p. 32)

Pick up a handful of longs and minis and place them in the appropriate columns. Then partition them in different ways. Record on the ‘Renaming numbers’ board.